
# Harmonic Stress Test easYgen3500 TL: 8440-3934

## **1. Introduction**

A test of the behavior of the Easygen3500 at high harmonic load was performed. Focus was 11<sup>th</sup> harmonics in current and voltage. Base was a report of problems with load sharing at a site in Ecuador. For that the Easygen was fed with current and voltage of an OMICRON source and the measurement of power, reactive power and frequency was analyzed.

The Input is a measurement protocol of an EGCP-3. In the following figure the white curve shows the 11<sup>th</sup> harmonics current relative to the fundamental and the red curve shows the same for the voltage. Measurement time is about 2 minutes.



| 5418-3972-NEW | _us_5418-3972-NEW_x32.wtool - Woodward<br>: <u>S</u> ettings <u>T</u> ools <u>H</u> elp | ToolKit               |                                     |                      |  |  |  |  |
|---------------|-----------------------------------------------------------------------------------------|-----------------------|-------------------------------------|----------------------|--|--|--|--|
| ) 😂 📙   🗞   🕻 | 👔 📔 🔹 🛗 🚽 📴 😋 🕤 Configure measurement                                                   |                       | 🔹 📜 Connect 📈 Disconnect            |                      |  |  |  |  |
| I STOP        | Active code level for this session:<br>5 More                                           | Configure measurement |                                     |                      |  |  |  |  |
| )             | 235 Generator type                                                                      | Synchron 💌            | 4103 Show mains data                | EG3000 🖌             |  |  |  |  |
|               | 1750 System rated frequency                                                             | 60Hz 💌                | Transformer                         |                      |  |  |  |  |
| LARM STATUS   | 1601 Engine rated speed                                                                 | 1800 rpm              | 1801 Gen. PT primary rated voltage  | 400 V                |  |  |  |  |
| LANK STATUS   | 1766 Generator rated voltage                                                            | 400 V                 | 1800 Gen. PT secondary rated volt.  | 400 V                |  |  |  |  |
| PARAMETER     | 1768 Mains rated voltage                                                                | 400 V                 | 1806 Gen. CT primary rated current  | 2000 A/x             |  |  |  |  |
|               | 1781 Busbar 1 rated voltage                                                             | 400 V                 | 1810 Gnd. CT primary rated current  | 500 A/x              |  |  |  |  |
| TATUS MENU    | 1752 Gen. rated active power [kW]                                                       | 1000                  | 1813 Busb1 PT primary rated voltage | 400 V                |  |  |  |  |
|               | 1758 Gen. rated react. power [kvar]                                                     | 700                   | 1812 Busb1 PT secondary rated volt. | 400 V                |  |  |  |  |
|               | 1754 Generator rated current                                                            | 1800 A                | 1804 Mains PT primary rated voltage | 400 V                |  |  |  |  |
|               | 1748 Mains rated active power [kW]                                                      | 200                   | 1803 Mains PT secondary rated volt. | 400 V                |  |  |  |  |
|               | 1746 Mains rated react, pwr. [kvar]                                                     | 200                   | 1807 Mains CT primary rated current | 500 A/x              |  |  |  |  |
|               | 1785 Mains rated current                                                                | 300 A                 | <b>—</b> , , , ,                    |                      |  |  |  |  |
|               | 1858 1Ph2W voltage measuring                                                            | Phase - phase 🔽       | External mains active p             |                      |  |  |  |  |
|               | 1859 1Ph2W phase rotation                                                               | CW 💌                  | 2966 External mains active power    | No 💌                 |  |  |  |  |
|               | 1851 Generator voltage measuring                                                        | 3Ph 4W 🔽              | 5780 Data source                    | 06.01 Analog input 1 |  |  |  |  |
|               | 1850 Generator current measuring                                                        | L1 L2 L3 💌            | 2967 Mains power meas, resolution   | 1kW 🔽                |  |  |  |  |
|               | 1853 Mains voltage measuring                                                            | 3Ph 4W 🔽              |                                     |                      |  |  |  |  |
|               | 1854 Mains current input                                                                | Mains current         |                                     |                      |  |  |  |  |
|               | 1852 Mains current measuring                                                            | Phase L1 💌            |                                     |                      |  |  |  |  |
|               | 1825 System rated active power[kW]                                                      | 1000,0                |                                     |                      |  |  |  |  |
|               |                                                                                         |                       |                                     |                      |  |  |  |  |
| ected on COM5 | 💭 Details Min: 1, Max: 32000                                                            |                       |                                     |                      |  |  |  |  |

The Easygen3500 was configured in a way similar to the EGCP-3:

The easYgen is configured as follows:

- 400V /60Hz rated
- 1800A rated
- 2000/5 CT ratio
- 1000kW rated (Nominal Measurement is 1.38MW [400V / 2000A])

## 2. Measurement: No harmonics.

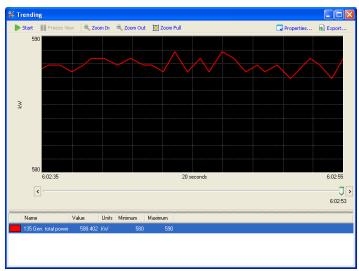
As reference the accuracy and jitter of the EasyGen3500 for undisturbed inputs was tested.

|                                                                                                                               |                       | nics - [Prüfur                                                     |       | Harmonics | s1]                |                                                             |          |        |                       |                                          |       |        |                                                                                |  |
|-------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------|-------|-----------|--------------------|-------------------------------------------------------------|----------|--------|-----------------------|------------------------------------------|-------|--------|--------------------------------------------------------------------------------|--|
|                                                                                                                               |                       | Pa <u>r</u> ameter <u>F</u>                                        |       |           |                    |                                                             |          |        |                       |                                          |       |        |                                                                                |  |
| Spanning           1         23           2         23           3         23           Strom         1           2         2 |                       | 0,00 °<br>-120,00 °<br>120,00 °<br>23,00 °<br>-97,00 °<br>143,00 ° |       | 1         | Signal<br>Nach-Sig | iltion<br>al (Grundschw<br>gnal (Grundsch<br>sne Auslösezei | wingung) |        | Г<br>Г<br>Г           | Zeit<br>0,000 s<br>1,000 s<br>0,500 s    |       |        | 9<br>UL1-E<br>9<br>UL2-E<br>9<br>UL3-E<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2 |  |
| Frequenz                                                                                                                      | Frequenz<br>60,000 Hz |                                                                    |       |           |                    |                                                             |          |        | der Grundsch<br>solut | Oberschwingungen<br>Grundschwingung<br>t |       |        |                                                                                |  |
| Ordnu                                                                                                                         |                       |                                                                    | Betr. | Phase     | Betr.              | Phase                                                       | Betr.    | Phase  | Betr.                 | Phase                                    | Betr. | Phase  |                                                                                |  |
| 11                                                                                                                            | 0 %                   | 0,00 *                                                             | 0%    | 0,00 *    | 0%                 | 0,00 *                                                      | 0%       | 0,00 * | 0%                    | 0,00 *                                   | 0%    | 0,00 * |                                                                                |  |
| 000                                                                                                                           |                       | 7891<br>CCCC                                                       |       |           |                    |                                                             |          |        |                       |                                          |       |        |                                                                                |  |
| <b>X</b>                                                                                                                      |                       |                                                                    |       |           |                    |                                                             |          |        |                       |                                          |       |        |                                                                                |  |
| Bereit                                                                                                                        |                       |                                                                    |       |           |                    |                                                             |          |        |                       |                                          |       | 9.     | / 👽 /                                                                          |  |

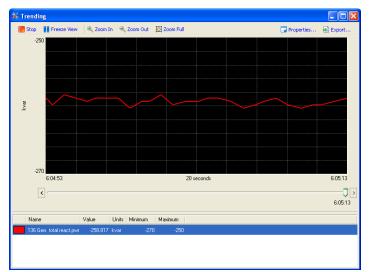
The OMICRON voltage generator is configured to:

- 400V/60Hz rated
- 2.33 A apparent current
- 23° (arccos of 0.91 PF)
- Voltage: No harmonics
- Current: No harmonics

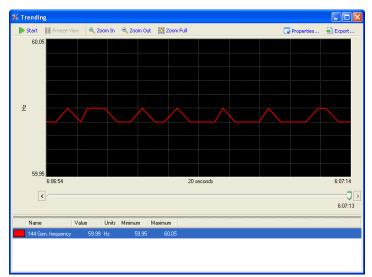
| 5418-3972-NEW_us_5418-3972-NEW_x   | 32.wtool - Woodward      | ToolKit                  |               |
|------------------------------------|--------------------------|--------------------------|---------------|
|                                    | Measured values::General | tor 🚽 📝 Connect 🦼 Di     | isconnect     |
| Voltage phase-phase                |                          | Voltage phase-neutral    |               |
| 171 Gen.aver. ph-ph volt           | 399,4 V                  | 170 Gen. aver. ph-n volt | 230,5 V       |
| 108 Gen. voltage L1-L2             | 399,1 V                  | 114 Gen. voltage L1-N    | 230,5 V       |
| 109 Gen. voltage L2-L3             | 399,1 V                  | 115 Gen. voltage L2-N    | 230,1 V       |
| 110 Gen. voltage L3-L1             | 400,0 V                  | 116 Gen. voltage L3-N    | 231,0 V       |
| Frequency                          |                          |                          |               |
| 144 Gen. frequency                 | 60,00 Hz                 |                          |               |
| Active power                       |                          | Reactive power           |               |
| 135 Gen. total power               | 588,402 kW               | 136 Gen. total react.pwr | -259,312 kvar |
| 125 Gen. power L1-N                | 196,464 kW               | 128 Gen. react.pwr. L1-N | -85,612 kvar  |
| 126 Gen. power L2-N                | 195,474 kW               | 129 Gen. react.pwr. L2-N | -84,623 kvar  |
| 127 Gen. power L3-N                | 196,958 kW               | 130 Gen. react.pwr. L3-N | -89,076 kvar  |
| Apparent power                     |                          | Power factor             |               |
| 4690 Gen. rated appar. power [kVA] | 1220,6                   | 160 Gen. power factor    | -0,915        |
| 137 Gen. total appar.pwr           | 642,838 kVA              | 139 Gen. power factor L1 | -0,916        |
| 131 Gen. appar.pwr. L1-N           | 214,279 kVA              | 203 Gen. power factor L2 | -0,917        |
| 132 Gen. appar.pwr. L2-N           | 213,784 kVA              | 204 Gen. power factor L3 | -0,913        |
| 133 Gen. appar.pwr. L3-N           | 215,764 kVA              |                          |               |
|                                    | Cu                       | rrent                    |               |
| 185 Gen. current average           | 932,933 A                |                          |               |
| 111 Gen. current L1                | 931,200 A                | 155 Gen. max. current L1 | 943,600 A     |
| 112 Gen. current L2                | 930,800 A                | 156 Gen. max. current L2 | 943,600 A     |
| 113 Gen. current L3                | 934,800 A                | 157 Gen. max. current L3 | 950,000 A     |
|                                    |                          |                          | >             |
| nnected on COM5 🦙 Details          |                          |                          |               |


This leads in the easYgen to following measurement data:

Theoretically P=U\*I\*cosPhi\*3 \* (Transformer ratio=400)


P= 230.94 \* 2.330 \* 0.9205 \* 3 \* 400 = 594,37kW

Difference is less than =0.45% related to nominal rated (1,38MW)


This is 4 times better as specified.



Maximum 2kW Jitter at 1000kW engine rated



Max. 2kvar Jitter



Max. 0.01 Hz Jitter

EG3500 Measurement Test

# 3. Measurement: Harmonics according to the EGCP-3 example

|          |                                                                   |                                                                         | ics - [Prüfur                                                |       | Harmonics | s1]               |                                                              |          |        |                  |                                       |       |           |                                                         |
|----------|-------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------|-------|-----------|-------------------|--------------------------------------------------------------|----------|--------|------------------|---------------------------------------|-------|-----------|---------------------------------------------------------|
| _        |                                                                   |                                                                         | Parameter <u>H</u>                                           |       |           |                   |                                                              |          |        |                  |                                       |       |           |                                                         |
|          | nnung –<br>230,<br>230,<br>230,<br>230,<br>230,<br>2,<br>2,<br>2, | 940 V  <br>940 V  <br>940 V  <br>940 V  <br>330 A  <br>330 A  <br>330 A | 0,00°<br>-120,00°<br>120,00°<br>23,00°<br>-97,00°<br>143,00° |       | 1         | Signal<br>Nach-Si | nition<br>nal (Grundschw<br>gnal (Grundsch<br>iene Auslöseze | wingung) |        | ן<br>ן<br>ן<br>ן | Zeit<br>0,000 s<br>1,000 s<br>0,500 s |       |           | ULI-E<br>ULI-E<br>UL2-E<br>UL3-E<br>UL3-E<br>IL1<br>IL2 |
| Freq     | juenz                                                             | 60,000 H                                                                |                                                              |       |           | C Low-            | Aktiv<br>Aktiv                                               |          |        |                  | hwingung                              |       | -14 0.000 | IL3                                                     |
|          | rdnun                                                             |                                                                         | Phase                                                        | Betr. | Phase     | Betr.             | Phase                                                        | Betr.    | Phase  | Betr.            | Phase                                 | Betr. | Phase     |                                                         |
| 11       |                                                                   | 11 %                                                                    | 0,00 °                                                       | 11 %  | 0,00 °    | 11 %              | 0,00 °                                                       | 19 %     | 0,00 " | 19 %             | 0,00 °                                | 19 %  | 0,00 "    |                                                         |
| ►        |                                                                   |                                                                         | 100                                                          |       | - 100     |                   | - 100                                                        |          |        |                  | -144                                  |       | - 142     |                                                         |
|          |                                                                   |                                                                         | 7891<br>CCCC                                                 |       |           |                   |                                                              |          |        |                  |                                       |       |           |                                                         |
| <u>×</u> |                                                                   |                                                                         |                                                              |       |           |                   |                                                              |          |        |                  |                                       |       |           | *                                                       |
|          |                                                                   |                                                                         |                                                              |       |           |                   |                                                              |          |        |                  |                                       |       |           |                                                         |
| Bereit   |                                                                   |                                                                         |                                                              |       |           |                   |                                                              |          |        |                  |                                       |       |           | 1 🔁 //                                                  |

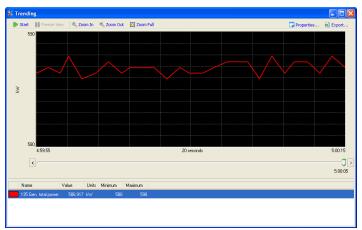
The OMICRON voltage generator is configured to:

- 400V/60Hz rated
- 2.33 A apparent current
- 23° (arccos of 0.91 PF)
- Voltage: Additional 11% of fundamental at 11th harmonics
- Current: Additional 19% of fundamental at 11th harmonics

These are the values from the EGCP-3 example.

| 5418-3972-NEW_us_5418-3972-NEW_x3 File View Device Settings Tools Help | 2.wtool - Woodwa       | ırd ToolKit              |               |
|------------------------------------------------------------------------|------------------------|--------------------------|---------------|
|                                                                        | Measured values::Ger   | ierator 🗸 🛛 🍠 Connect 🦼  | Disconnect    |
| 171 Gen.aver. ph-ph volt                                               | 400,2 V                |                          | 230,9 V       |
| 108 Gen. voltage L1-L2                                                 | 399,7 V                | 114 Gen. voltage L1-N    | 230,9 V       |
| 109 Gen. voltage L2-L3                                                 | 399,9 V                | 115 Gen. voltage L2·N    | 230,4 V       |
| 110 Gen. voltage L3-L1                                                 | 400,7 V                | 116 Gen. voltage L3-N    | 231,4 V       |
| Frequency                                                              |                        |                          |               |
| 144 Gen. frequency                                                     | 59,99 H                | z                        |               |
| Active power                                                           |                        | Reactive power           |               |
| 135 Gen. total power                                                   | 586,422 k              |                          | -257,333 kvar |
| 125 Gen. power L1-N                                                    | 195,969 k              |                          | -86,602 kvar  |
| 126 Gen. power L2-N                                                    | 195,474 k              | ·                        | -86,602 kvar  |
| 127 Gen. power L3-N                                                    | 196,464 k <sup>a</sup> | ·                        | -83,633 kvar  |
| Apparent power                                                         |                        | Power factor             |               |
| 4690 Gen. rated appar. power [kVA]                                     | 1220,6                 | 160 Gen. power factor    | -0.917        |
| 137 Gen. total appar.pwr                                               | 640,858 KV             |                          | -0,917        |
| 131 Gen. appar.pwr. L1-N                                               | 215,764 KV             |                          | -0.912        |
| 132 Gen. appar.pwr. L2-N                                               | 215,269 KV             |                          | -0.920        |
| 133 Gen. appar.pwr. L3-N                                               | 215,269 kV             |                          | 0,020         |
|                                                                        |                        | Current                  |               |
|                                                                        |                        |                          |               |
| 185 Gen. current average                                               | 933,466 A              |                          |               |
| 111 Gen. current L1                                                    | 934,400 A              | 155 Gen. max. current L1 | 943,600 A     |
| 112 Gen. current L2                                                    | 935,200 A              | 156 Gen. max. current L2 | 943,600 A     |
| 113 Gen. current L3                                                    | 931,600 A              | 157 Gen. max. current L3 | 950,000 A     |
|                                                                        |                        | 159 Calc. ground current | 9,600 A       |
|                                                                        |                        |                          |               |
| nnected on COM5 🙀 Details                                              |                        |                          | >             |

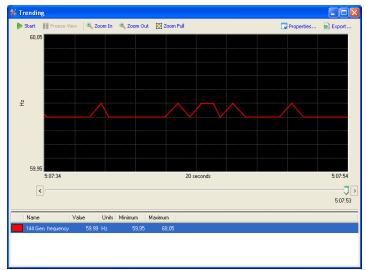
This leads in the easYgen to following measurement data:


Theoretically P=U\*I\*cosPhi\*3 \* (Harmonics part) \* (Transformer ratio)

P= 230.94\*2.330\*0.9205\*3\*(1+0.11\*0.19)\*400= 606,79kW

Difference is less than =1.45% nominal rated (1,38MW)

This is within the specification.


One reason for this difference is that the 11th harmonic part is filtered out by the easYgen Hardware.



Max. 2kW Jitter at 1000kW engine rated



Max. 2kvar Jitter



Max. 0.01 Hz Jitter

# 4. Measurement: Strong Harmonics example

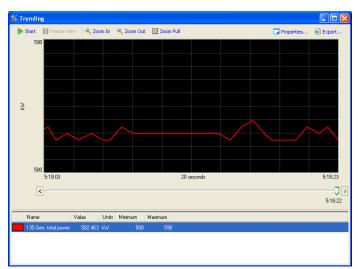
|                 |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <mark>ics - [Prüfun</mark><br>Pa <u>r</u> ameter <u>H</u>          |                        | Harmonics       | :1]                         |                                                    |                     |                         |                      |                                       |                      |                        |                                                                                        |
|-----------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------|-----------------|-----------------------------|----------------------------------------------------|---------------------|-------------------------|----------------------|---------------------------------------|----------------------|------------------------|----------------------------------------------------------------------------------------|
| _               |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                    |                        |                 |                             |                                                    |                     |                         |                      |                                       |                      |                        |                                                                                        |
| 1<br>2<br>3<br> | 230<br>230<br>om<br>2<br>2<br>2<br>2<br>2<br>2 | .940 V<br>940 V<br>940 V<br>330 A<br>330 A<br>330 A<br>330 A<br>330 A<br>330 A<br>S40 V<br>S40 | 0.00 °<br>-120.00 °<br>120.00 °<br>23.00 °<br>-97.00 °<br>143.00 ° |                        | <u>.</u>        | Signal<br>Nach-Si<br>Gemess | nal (Grundschw<br>gnal (Grundsch<br>ene Auslösezei | wingung)            |                         | <br> <br>            | Zeit<br>0,000 s<br>1,000 s<br>0,500 s |                      |                        | 9<br>UL1-E<br>9<br>UL2-E<br>9<br>UL3-E<br>9<br>IL1<br>9<br>IL1<br>9<br>IL2<br>9<br>IL3 |
| Fre             | equenz —                                       | 60,000 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                    |                        |                 | C Low-                      | Aktiv<br>Aktiv                                     |                     | ©% o<br>C Abs           | der Grundsc<br>:olut |                                       |                      |                        |                                                                                        |
|                 | Ordnun                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lirrfaktor = 30,<br>Phase                                          | U L2-E (Kliri<br>Betr. |                 | UL3-E (Kli<br>Betr.         | rrfaktor = 30,<br>Phase                            | IL1 (Klirr<br>Betr. | faktor = 30,00<br>Phase | I L2 (Klirr<br>Betr. | faktor = 30,00<br>Phase               | IL3 (Klirri<br>Betr. | aktor = 35,00<br>Phase |                                                                                        |
|                 | oranun<br>11                                   | вец.<br>30 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,00 °                                                             |                        | Phase<br>0.00 ° | вец.<br>30 %                | 0,00 °                                             | вец.<br>30 %        | 0,00 °                  | вец.<br>30 %         | 0.00 °                                | вец.<br>30 %         | 0,00 °                 |                                                                                        |
| ►               |                                                | 30 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,00                                                               | 30 %                   | 0,00            | 30 %                        | 0,00                                               | 30 %                | 0,00                    | 30 %                 | 0,00                                  | 00 %                 | 0,00                   |                                                                                        |
|                 |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7891<br>CCCC                                                       |                        |                 |                             |                                                    | <u></u>             |                         |                      |                                       | <u></u>              |                        |                                                                                        |
| хI              |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                    |                        |                 |                             |                                                    |                     |                         |                      |                                       |                      |                        |                                                                                        |
| ×               |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                    |                        |                 |                             |                                                    |                     |                         |                      |                                       |                      |                        | *                                                                                      |
| Bereit          |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                    |                        |                 |                             |                                                    |                     |                         |                      |                                       |                      |                        | <b>/ 💎</b> //                                                                          |

The OMICRON voltage generator is configured to:

- 400V/60Hz rated
- 2.33 A apparent current
- 23° (arccos of 0.91 PF)
- Voltage: Additional 30% of fundamental at 11th harmonics
- Current: Additional 30% of fundamental at 11th harmonics

These are very high demonstration values as an example.

| <b>¥</b> 5418-3972-NEW_us_5418-3972-NEW_x3 | 2.wtool - Wood | ward To | olKit                    |          |      |
|--------------------------------------------|----------------|---------|--------------------------|----------|------|
| Eile View Device Settings Tools Help       |                |         |                          |          |      |
| 🗄 🗅 🥔 📕   🗞 🔛 🗄 - 🛗 - 🗎 😋 🔵                |                |         | 🗸 🔋 🎾 Connect 🛛 📈 Dis    |          |      |
| 171 Gen.aver. ph-ph volt                   | 404,4          | V       | 170 Gen. aver. ph-n volt | 233,4    | v 🔼  |
| 108 Gen. voltage L1-L2                     | 404,0          | V       | 114 Gen. voltage L1-N    | 233,0    | v    |
| 109 Gen. voltage L2-L3                     | 404,5          | V       | 115 Gen. voltage L2-N    | 233,0    | v    |
| 110 Gen. voltage L3-L1                     | 405,1          | V       | 116 Gen. voltage L3-N    | 234,1    | v    |
| Frequency                                  |                |         |                          |          |      |
| 144 Gen. frequency                         | 59,99          | Hz      |                          |          |      |
| Active power                               |                |         | Reactive power           |          |      |
| 135 Gen. total power                       | 582,463        | kW      | 136 Gen. total react.pwr | -261,787 | kvar |
| 125 Gen. power L1-N                        | 194,484        | kW      | 128 Gen. react.pwr. L1-N | -86,602  | kvar |
| 126 Gen. power L2-N                        | 193,989        | kW      | 129 Gen. react.pwr. L2-N | -86,602  | kvar |
| 127 Gen. power L3-N                        | 194,484        | k₩      | 130 Gen. react.pwr. L3-N | -88,087  | kvar |
| Apparent power                             |                |         | Power factor             |          |      |
| 4690 Gen. rated appar. power [kVA]         | 1220,6         |         | 160 Gen. power factor    | -0,911   |      |
| 137 Gen. total appar.pwr                   | 639,374        | kVA     | 139 Gen. power factor L1 | -0,919   |      |
| 131 Gen. appar.pwr. L1-N                   | 219,228        | kVA     | 203 Gen. power factor L2 | -0,917   |      |
| 132 Gen. appar.pwr. L2-N                   | 219,228        | kVA     | 204 Gen. power factor L3 | -0,919   |      |
| 133 Gen. appar.pwr. L3-N                   | 221,207        | kVA     |                          |          |      |
|                                            |                | Curr    | ent                      |          |      |
| 185 Gen. current average                   | 943,333        | A       |                          |          |      |
| 111 Gen. current L1                        | 941,600        | A       | 155 Gen. max. current L1 | 943,600  | A    |
| 112 Gen. current L2                        | 942,000        | A       | 156 Gen. max. current L2 | 943,600  | A    |
| 113 Gen. current L3                        | 947,200        | А       | 157 Gen. max. current L3 | 949,200  | A    |
|                                            |                |         | 159 Calc. ground current | 8,000    | A    |
| <                                          |                |         |                          |          | ×    |
| Connected on COM5                          |                |         |                          |          |      |


This leads in the easYgen to following measurement data:

Theoretically P=U\*I\*cosPhi\*3 \* (Harmonics part) \* (Transformer ratio)


P= 230.94\*2.330\*0.9205\*3\*(1+0.3\*0.3)\*400= 647,8kW

Difference is less than =4.8% nominal rated (1,38MW)


One reason for this difference is that the 11th harmonic part is filtered out by the easYgen Hardware.







Max. 4kvar Jitter



Max. 0.03 Hz Jitter

EG3500 Measurement Test

## 5. Results and Conclusions

### Results

- Test at reported conditions
  - Instability of the Easygen's measurement at the reported conditions (19% for current and 11% for voltage at 11<sup>th</sup> harmonics) could not be confirmed. The jitter is same as in the undisturbed measurement and significantly smaller than the accuracy specification
  - The absolute measurement error was larger than in the undisturbed measurement but still in the specified range
- Test at higher distortions
  - At significant higher distortions (30% for current and 30% for voltage at 11<sup>th</sup> harmonics) a higher measurement jitter was visible. The jitter is still significantly smaller than the accuracy specification
  - The absolute measurement error was larger than specified. The reason is considered the hardware filter which filters out most of the 11<sup>th</sup> harmonics content

#### Restrictions

The data from the field were not very detailed. Showed values for the distortion was only total harmonic content and that this mostly contains the 11<sup>th</sup> harmonics was only communicated verbally.

### **Conclusions**

We assume that the reported instability of the Easygen was not caused by instability of the AC measurement due high harmonics content. A more probable source may be improper PID settings or other regulation setting. However, out tests were only cursory and the reported data was not complete so there is still the chance that our tests missed something